

ぞ 愛媛大学 弾性波と音波は、何らかの媒質を振動させながら、 進行する波動のこと、音波は圧縮モードしか無い。
非破壊検査 構造部材に対する超音波探傷:一般的には周波数 0.01MHz~20MHz
医療 超音波エコー検査:一般的には周波数 1MHz~20MHz
海中探査 水中ソナー(魚群探知):一般的には周波数 数KHz~数+KHz
地中探査 物理探査(石油探査,地層把握等):一般的には周波数 数Hz~数百Hz

C
コンセプト
マイクロソフトのOffice ®,特にPowerPoint ®が使える人 ならば,本シミュレータを簡単に動作することができる.
特徴 操作性能:GUIの使いやすさ・軽快さの徹底的追求
動作性能: 計算は高速実行(並列CPU/GPU計算)
データ処理: 計算結果をリアルタイム可視化
<u> 拡張性: コアを増やした分だけ ,計算性能はリニアに向上</u>

で 愛媛大学 Bedg UNVOST/
ご静聴ありがとうございました
本研究は
1.ドイツFraunhofer Institute, IZFP
 京都大学 学術情報メディアセンター プログラム高度化共同研究2010 京都大学学術情報メディアセンター Academic Company and Media Studies, Kipto University
3. スズキ財団(平成22年度科学技術研究助成)
の援助を受けました。記して謝意を表します。
また、くいんと(株)Voxelconが無ければ本研究はここまで 到達していなかったと思います、石井社長、月野様に深く感謝申し上げます。

